
Long-range transport of Saharan dust and chemical transformations over the Eastern Mediterranean

Athanasopoulou E.², Protonotariou A.¹, Papangelis G.¹, Tombrou M.¹, Mihalopoulos N.² and Gerasopoulos E.²

2 Institute for Environmental Research and Sustainable Development, National Observatory of Athens 15236, Greece

Introduction

The dust events detected at the lower traposphere of the Eastern Mediterranean (EM) contribute to the 50% of the days with PM₁₀ loads above the EU limits (Kallos et al., 2007, Astitha et al., 2008) and are found concomitant with 10 % (arban sites) - 67% (background sites) of the excesses (Contini et al., 2014). Also, a recent study at the southmost border of EM (Nastos et al., 2016) declared sust intrusions responsible for *acute health impacts* and *adverse biometeorological conditions*.

The need to systematically investigate the changes in the atmospheric chemical composition during the transport of African dust towards the Mediterranean basin is pointed out by a synthesis of several experimental studies (e.g. Metzger et al., 2006; Formenti et al., 2011; Rodriguez et al., 2012; Schulz et al., 2012). Model findings are usually based on (multi-)annual, coarse resolution averages, thus they do not reflect dust transport and chemistry during different seasons and transport modes (e.g. Ginoux et al., 2001; Zender et al., 2003; Trebs et al., 2005; Kallos et al., 2007, Kaltha et al., 2012; Karydis et al., 2015; Abdelkader et al., 2015).

The present effort updates the model setup (i.e. PMCAMx, WRF and GEOS-CHEM) of two previous studies (Tombrou et al., 2009; Athanasopoulou et al., 2015) to study 3 recent and important Staharan dust events over the EM. The synergistic use of synoptic patterns, aerosol optical depth retrievals, back-trajectories and ground aerosol measurements confirm its ability to reproduce source regions of dust, transport pathways, vertical structure and aerosol hemical composition over the EM. Sensitivity tests aim at investigating the role of dust as condensation surface for inorganic gases during different seasons and counting on different dust source regions, pathways, loads and vertical settents.

Methodology and data

The model system used is composed of a regional photochemical model (PMCAMx), which provides the aerosol predictions over the EM, a regional atmospheric model (VMF/AMV), which feeds PMCAMx with the necessary meteorological fields and a global chemistry transport model (GEOS-CHEM), which provides the African dust input to the regional aerosol modeling (Table 1). Model simulations are realized during the periods of 04-07.02.2009 (winter case), 27.11-02.12.2010 (late autumn case) and 18–21.07.2011 (summer case).

Supplementary data: usage & outcome

●NCEP/NCAR synoptic patterns: origins and transport paths of Saharan dust towards the EM (Fig. 1). ●Online available outputs (maps and profiles) of the BSC-DREAMBb model v1.0 (e.g. Petre et al., 2006;a 2006); Basart et al., 2012) ●Aerosol chemical composition at Finokalia, Crete (35.34° N, 25.67° E, 250m a.s.l.) and at Penteli, Attica (38.04° N, 23.86° E, 495m a.s.l., 13 km northeast the Athens city center) ●Online available (NASA) satellite retrievals of Aerosol Optical Depth values (AOD at 550 nm) ●Back-trajectories (HYSPLIT): the current model system is found competent to reproduce African dust production, long-range transport and chemical transformations over the EM.

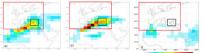


Fig. 1. The dust optical depth (DOD) calculated by GEOS-CHEM during the 3 peak days of the selected dust events: a) 07.02.2009, e) 01.12.2010, i) 20.07.2011) s. Red rectangle: GEOS-CHEM domain B; Black rectangle: PMCAMx domain

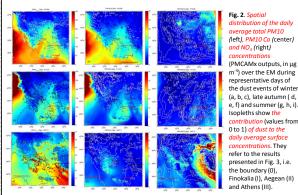

 \cap

Table 1. Main characteristics of the WRF meso-scale meteorological model, the GEOS-Chem v8-03-01 global and the PMCAMx regional CTM applications.

SMURBS

	WRF	GEOS-Chem	PMCAMx
Chemical and Physical mechanisms	Planetary boundary layer (PBL) parameterization: YSU (Hong et al., 2006) (standard run). BOULAC (Bougeault and Lacamire, 1989) and QNSE (Sukoriansky et al., 2005) are used in 2 additional scenarios.	NOR-Ox-hydrocarbon-aerosol species module (the SOA module by Chung and Seinfeld, 2002 and Henze et al., 2008 is inchaded). The mechanism is combined to the ISORROPIA II aerosol thermodynamics (Fountoukis and Nenes, 2007).	Gaseous chemistry: SAPRC99 (Carter, 1990), horquies nerosl chemistry: SOPRC914 (IrQuartoukis and Nenes, 2007), Organic aerosol chemistry: VBS (Shrayataxa et al. 2008), Lane et al. 2008), Dataleid chemical composition deithburded over ten durierte and isternatly mixed ters escions, in the diameter range 0.04-40 µm (cut-off diameters: 0.04, 0.08, 0.1, 0.3, 0.6, 1.2, 2.5, 5, 10, 20, 40 µm)
Initial, Lateral and Boundary conditions	National Centers for Environmental Prediction (NCEP) operational Global Final Analyses (1.0*×1.0*)		From the global GEOS-chem simulation $(0.5^{+}\times 0.667^{+})$
Input data	Sea surface temperature (SST): Real- Time Global SST analysis data (0.5%0.5%) <u>Land use categories</u> : 24 <u>Soll categories</u> : 16 (US Geological Survey)	Anthropogenic emission: GEIA, EMEP, Becest et al. (1992), Duncan et al. 2003, Yercika and Logan, 2003 Natural emissions: MEGAN, Price and Rind, 1992, Yernger and Levy, 1995, Wang et al., 1998 Meteorological data: Goddard Earth Observing System (GEOS-3)/NASA Global Modeling and Assimilation Office	Anthropagnetic, anglochural, Arnstei Hellenie, Meinier, Berlowennamer, (2002); EMEP Szazall and dant: Athanasopoulou et al., 2008; 2010 Meteorological data: Bromthe WRF simulation (0.056%-0.056%)
Vertical grid	35 sigma levels (from ca.10 m agl to 50 hPa)	47 hybrid eta levels (from ca. 50 m agl to 0.01 hPa)	14 levels (from surface to ca. 5.8 km)
Parent and nesting domains (extended areas of)	A. Europe (0.5°×0.5°) B. Greece and Italy (0.167°×0.167°) C. Aegean Archipelago (0.056°×0.056°)	A. Global domain (4*×5*) B. Europe (0.5*×0.667*)	Aegean Archipelago (0.056°×0.056°)

Results

 \cap

 \cap

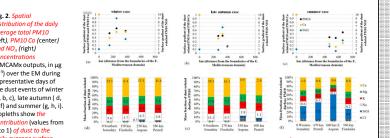


Fig. 3. The surface gradient rate of the dust mass of total PM_{10} and PM_{10} Ca²⁺ and PM_{10} NO_j^{-} (normalized to the boundary values; a-c) and the mass fractions (%) of the dust part of PM_{10} (mass concentrations in g m³ are labeled; 4f), as the dust plume penetrates to the EM during the 3 dust events. The location of the four sites is marked in Fig. 2, at the map of each event (0, I, II and III). Their distance from the selected site with the representative boundary values (at site 0 or at 0 km) is also given at the bottom.

 \cap

Conclusions

 \cap

The dust loads during the cold (summer) period events were high (light) and vertically extended (in the free troposphere). In all cases, dust originated from the northwest and/or west Saharan desert and reached the EM from the west/southwest.

The strongest dust influence (winter case) led to high daily surface concentrations of calcium (e.g. 5 and 3.4 μ g m³ in PM₁₀ model outputs and observations respectively, at Finokalia). The respective concentrations during the late autumn event are significantly lower (approximately by half), while the values during the summer case are below1 μ g m³. From those quantities, the predicted African dust fraction accounted for more than 70 % (90 % during the cold period cases) and its surface gradient (dissipation ratio for the cold period cases) downwind the dust flow is can -10% per 100 km.

Surface particulate nitrate concentrations over the EM are reversely affected by the approaching dust loads. The highest total absolute concentrations (up to 6 µg m³), as well as their dust fraction (ca. 70 %) occur during summertime, while the dust-bound nitrate mass during the cold period events is insignificant (below 0.5 µg m³). This is attributed to a combination of reasons: the availability of nitric acid is higher during summert, thus, the potential for its heterogeneous and irreversible reaction with mineral dust species is higher. Accumulation of aerosol particles in the atmosphere is favored by the low precipitation rates during summertime. The low deposition rates over the sea create a homogeneous field of nitrate over the EM, which is gradually built towards the Aegean Sea and downwind. Consequently, mineral species dominate the dust-related PM₁₀ concentrations (up to 98 %) during the cold period events, while the *effective formation of nitrate sourts for account from 20 to 60 % of the dust-bound aerosol* mersol mersorem enders them account from 20 to 60 % of the dust-bound aerosol mersol merson makes them account from 20 to 60 % of the dust-bound aerosol mersol.

 $\rm PM_{10}$ sodium over the Aegean Sea is apportioned to the Saharan dust intrusions by 50% and the rest originates from sea-salt, while the fraction of sulfate bound to dust is found insignificant.

 \cap

Acknowledgments

This study is a part of the research project "AERAS-ELS" within the framework of the Action "Supporting Postdoctoral Researchers" of the Operational Program "Education and Lifelong Learning", co-financed by the European Social Fund (ESF) and the Greek State. E. Athanasopoulou and E. Gerasopoulos acknowledge the funding received by EAA-PLANET (<u>www.era-planet.eu</u>), trans-national project SMURBS (<u>www.smurb.eu</u>) (Grant Agreement n. 689443), funded under the EU Horizon 2020 Framework Programme, for the participation in this conference. N. Mihalopoulos and E. Gerasopoulos acknowledge to support from ACRIS-2_INFRAM. For the participation in this conference. N. Mihalopoulos and E. Gerasopoulos acknowledge support form Acknowledge to the EUROPS_URFAM. Jo is an acknowledge for the provision of data from the SC-MBEAMBB (Dust REgional Atmospheric Model) model v1.0. E. Athanasopoulou thanks C. Fountoukis and S. N. Pandis for the use of the updated PMCAMx code, D. Paraskevopoulou for the use of the aerosol data from Penteli station and C. Theodosi, G. Kouvarakis for the use of the aerosol data from Single Station.

 $\hat{\mathbf{O}}$

Ô

More results from this study (incl. the cited references) are given in: Athanasopoulou E., A. Protonotariou, G. Papangelis, M. Tombrou, N. Mihalopoulos, E. Gerasopoulos, Long-range transport of Saharan dust and chemical transformations over the Eastern Mediterranean, Atmospheric Environment, Volume 140, September 2016, Pages 592-604, ISSN 1352-2310, http://dx.doi.org/10.1016/j.atmosenv.2016.06.041, 2016.

Contact information

 \cap

Mail address: Institute of Environmental Research & Sustainable Development, National Observatory of Athens, Lofos Koufou, GR 152 36, P. Penteli, Athens Phone: +30 697 4465168

E-mail: eathana@meteo.noa.gr

Website: http://apcg.meteo.noa.gr/